If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+2t=7
We move all terms to the left:
t^2+2t-(7)=0
a = 1; b = 2; c = -7;
Δ = b2-4ac
Δ = 22-4·1·(-7)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{2}}{2*1}=\frac{-2-4\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{2}}{2*1}=\frac{-2+4\sqrt{2}}{2} $
| 3t-12000=600t | | 9=4a(6) | | 2p–48=100 | | -7+5(n-3)=5n-22 | | c/1.8=18.1 | | (x^2)+x=-42 | | 3.3x-26.4-4=1.2 | | p/2.90=1.8 | | 4m-38=2(6m+1) | | 63=5x-19-8x+2-3x | | 3t=600t+12,000 | | 3+2x=x+12 | | 6x+11-8x=20-16x+14x-9 | | 6n-4=9 | | 6n-4=-9 | | (d+6)÷(-2)=5 | | 40-8n=-2(6n-4) | | x^2⋅4^(−9x)−2x⋅4^(−9x)=0 | | 4x-5+2x-1=90 | | 6|2y-4|-3=9 | | 2/3=m-1/3 | | 4(3x+5)=16x+4-4x+16 | | 35-3x=7x+5 | | -2(2x-3)=6x | | 15+7.5x+12.5×=75 | | 2d−3=5 | | 3t=600t+12000 | | 5=30-9.8x | | 4y-5+y+35=8y+30-5y | | 2x+14+6x-9*3x+2=180 | | 4(2x+3)+x=15 | | 4(x)+5(x)=47 |